Biomarkers in Langerhans cell histiocytosisassociated neurodegeneration A model for CNS Erdheim-Chester Disease?

September 14, 2016, 2016

Kenneth L McClain, Jennifer Picarsic, Rikhia Chakraborty, Howard Lin, Harshal Abhyankar, **Daniel Zinn** Brooks Scull, Albert Shih, Karen Lim, Stephen Simko, Olive Eckstein, Tricia L. Peters, Walter Olea, Thomas Burke, Nabil Ahmed, D. Williams Parsons, M. John Hicks, Huy D. Tran, Jeremy Jones, Robert Dauser, Michael Jeng, Robert Baiocchi, Deborah Schiff, Stanton Goldman, Kenneth Heym, Harry Wilson, Benjamin Carcamo, Ashish Kumar, Carlos Rodriguez-Galindo, Nicholas Whipple, Patrick Campbell, Geoffrey Murdoch, Simon Heales, Marian Malone, Randy Woltjer, Joseph Quinn, Paul Orchard, Michael Kruer, Ronald Jaffe, Markus Manz, Sergio Lira, Miriam Merad, Tsz-Kwong Man, Carl E. Allen

Baylor College of Medicine

CNS LCH: Pituitary & Brain

ECD Pituitary and Brain Involvement

T1 Post Contrast

T2 FLAIR

LCH-ND

- 4-10% of all LCH patients
- Ataxia, dysarthria, dysmetria, behavioral changes or learning disabilities
- Months to years after presumed cure
- MRI: cerebellum, basal ganglia, pons, dentate nuclei
- Pathophysiology
 - Autoimmune?
 - Paraneoplastic ?
 - Other?

What is known about Etiology of ND-LCH?

- Not much
- Limited tissues to investigate: results published on 12 specimens
- Limited reagents used: CD1a, CD8, CD4, CD68
- No CD1a+ cells
- Prominent CD8+ infiltration
- Neuronal and axonal degeneration
- Secondary myelin loss
- Pathologic cells migrate from craniofacial bones/circumventricular organ to CSF, brain?

ND-LCH Cerebellum

N. Grois,, D. Prayer, H. Prosch & H. Lassman Neuropathology of CNS Disease in LCH. *Brain* 2005

Hypotheses

- Pathologic LCH cells and inflammatory cells secrete proteins creating unique CSF protein profiles
- Using BRAF V600E as a marker of pathologic LCH cells it may be possible to trace origin of and course of ND-LCH

Objectives

- Evaluation of biomarkers in patients with CNS manifestations of LCH
 - Define pathophysiology
 - Differentiate LCH from other CNS tumors
 - Develop Strategies Predict Development of LCH-ND
- Identify optimal treatment strategies

Patient Demographics n=40

Methods

- Proteomics assay of CSF: 142 analytes using a Luminex platform Bio-informatic analysis to find best markers
- qPCR assay for *BRAF*V600E-mutated cells in CSF and blood
- Immuno-staining of brain sections for LCH cells, mutated BRAF protein, S100B, CD3
- qPCR of brain tissue for CD207 and Osteopontin

OPN and S100B in CSF

Distinguishing LCH-ND vs ND controls

S100B

Combinations of proteins differentiate ND-LCH from Controls

Sensitivity 0.725, Specificity 0.759, Overall accuracy 75%

Sensitivity 0.975, Specificity 0.68, Overall accuracy 86%

Sensitivity 0.750, Specificity 0.763, Overall accuracy 76%

Circulating BRAF-V600E in LCH

BRAF-V600E cells in CSF of LCH-ND

Circulating BRAF-V600E cells in LCH-ND

Circulating BRAF-V600E cells in LCH-ND

LCH (Lymph Nade

Acute LCH ND (LCH060)

CD207

(LCH059)

VE-1

Immunohistochemistry

OPN

S100B

BRAF-V600E and OPN Expression by qPCR In Brain Tissue from Various Locations

Proposed Model of LCH-ND

Clinical Response to Treatment with BRAF-inhibitors

Conclusions

- Osteopontin is a reliable marker of LCH CNS Involvement
- Identification of circulating and "brain-resident" BRAF-V600E mutated cells suggests they play a major role in neurodegeneration
- Targeted therapy for BRAF or other MAP kinase genes is likely the best option for LCH patients with neurodegeneration
- Investigation of ECD patients with CNS involvement is warrented

Acknowledgments

Histiocytosis Program:

Allen Lab Members Alice Solomon, BS Baruch Goldberg, MD Brooks Scull, MS Elmoataz Fattah, MD **Ernesto Joubran**, BS Harshal Abhyankar, MS Karen Lim, MS Joseph Lubega, MD Olive Eckstein, MD Walter Olea Thomas Burke, BS

TXCH Cancer Genomics

Will Parsons, MD, PhD Oliver Hampton, PhD **Bioinformatics**

Bioinformatics

Chris Man, PhD Howard Lin

Baylor Epidemiology Group

Philip Lupo, PhD Erin Peckham, PhD **Clinical Coordinator Team** Munu Bilgi Elizabeth Pacheco Maria Diaz Linna Zhang, PhD

Circulating WBCs Harbor *BRAF-V600E* Mutation in High Risk LCH

				ALL		Brain Tumor		ND		HLH
Gender	Male	26		14		12		28		6
	Female	14		15		13		8		3
	Unknown	-		-		-		2		-
	0-3	1		5		7		2		1
Age	3-18	29 10		24 -		18		14		8
	>18					-		2		-
Subtype		ND 10 ND + Pit 18 Pit 12	Induction Consolidation Maintenance Other	2 1 15 11	Medulloblastoma Meningeal Sarcoma Ependymoma Astrocytoma Germinoma Craniopharyngioma ATRT Pineal Mass	13 1 3 2 2 1 2 1 2 1	X-LALD Alzheimer's Multiple Sclerosis Parkinson's Batten Dx Multi-organ Failure Other	10 15 3 6 2 1 1	_	
Total		40		29		25		38		9

Clinical Courses

Persistence of BRAF-V600E in Circulating White Blood Cells

Time from Date of Diagnosis (Years)

Multiple Sub-fractions Harbor BRAF-V600E

		T-Cells	B-Cells	Macs	Mono/KN	DC Precursor	Meyloid DC	Neg Fraction
MB Number	BRAF % Unsorted	CD3	CD19	CD64	CD16	CD11c	CD11c + CD14	CD11c- CD14-
LCH028	0.08	Yes						
LCH023	0.04						Yes	
LCH014	0.17				Yes	Yes		
LCH006	0.03	Yes						
LCH013	<0.02	Yes		Yes	Yes		Yes	
LCH015	<0.02							
LCH022	0.04				Yes			
LCH040	0.02		Yes	Yes		Yes	Yes	Yes

Misguided Myeloid Dendritic Cell Model

Zinn et al. Oncology. 2016